The Generalized Method of Moments in the Bayesian Framework and a Model and Moment Selection Criterion
نویسنده
چکیده
While the classical framework has a rich set of limited information procedures such as GMM and other related methods, the situation is not so in the Bayesian framework. We develop a limited information procedure in the Bayesian framework that does not require the knowledge of the full likelihood. The developed procedure is a Bayesian counterpart of the classical GMM but has advantages over the classical GMM for practical applications. The necessary limited information for our approach is a set of moment conditions, instead of the likelihood function, which has a counterpart in the classical GMM. Such moment conditions in the Bayesian framework are obtained from the equality condition of the Bayes' estimator and the GMM estimator. From such moment conditions, a posterior probability measure is derived that forms the basis of our limited information Bayesian procedure. This limited information posterior has some desirable properties for small and large sample analyses. An alternative approach is also provided in this paper for deriving a limited information posterior based on a variant of the empirical likelihood method where an empirical likelihood is obtained from the moment conditions of the classical GMM. This alternative approach yields asymptotically the same result as the approach explained above. Based on our limited information method, we develop a procedure for selecting the moment for GMM. This moment selection procedure is an extension of the Bayesian information criterion to the Bayesian semi-parametric, limited information framework. It is shown that under some conditions the proposed moment selection procedure is a consistent decision rule.
منابع مشابه
Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds
Proper flood discharge forecasting is significant for the design of hydraulic structures, reducing the risk of failure, and minimizing downstream environmental damage. The objective of this study was to investigate the application of machine learning methods in Regional Flood Frequency Analysis (RFFA). To achieve this goal, 18 physiographic, climatic, lithological, and land use parameters were ...
متن کاملCVaR Reduced Fuzzy Variables and Their Second Order Moments
Based on credibilistic value-at-risk (CVaR) of regularfuzzy variable, we introduce a new CVaR reduction method fortype-2 fuzzy variables. The reduced fuzzy variables arecharacterized by parametric possibility distributions. We establishsome useful analytical expressions for mean values and secondorder moments of common reduced fuzzy variables. The convex properties of second order moments with ...
متن کاملBayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کامل